数学集合的符号有哪些?

网上有关“数学集合的符号有哪些?”话题很是火热,小编也是针对数学集合的符号有哪些?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

数学集合符号如下:

1、N:非负整数集合或自然数集合{0,1,2,3,…}。

2、N*或N+:正整数集合{1,2,3,…}。

3、Z:整数集合{…,-1,0,1,…}。

4、Q:有理数集合。

5、Q+:正有理数集合。

6、Q-:负有理数集合。

7、R:实数集合(包括有理数和无理数)。

8、R+:正实数集合。

9、R-:负实数集合。

10、C:复数集合。

11、? :空集(不含有任何元素的集合)。

集合基础知识:

集合(简称集)是数学中一个基本概念,由康托尔提出。它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的集合论--朴素集合论中的定义,集合就是"一堆东西"。集合里的"东西",叫作元素。若x是集合A的元素,则记作x∈A。

集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。现代数学还用"公理"来规定集合。最基本公理例如:外延公理:对于任意的集合S1和S2,S1=S2当且仅当对于任意的对象a,都有若a∈S1,则a∈S2;若a∈S2,则a∈S1。

无序对集合存在公理:对于任意的对象a与b,都存在一个集合S,使得S恰有两个元素,一个是对象a,一个是对象b。由外延公理,由它们组成的无序对集合是唯一的,记做{a,b}。 由于a,b是任意两个对象,它们可以相等,也可以不相等。当a=b时,{a,b},可以记做或,并且称之为单元集合。空集合存在公理:存在一个集合,它没有任何元素。

自然数集、整数集、有理数集、实数集有哪些表示符号?

0也是有理数。

数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

有理数运算:

加法运算:

1、同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两数相加得0。

4、一个数同0相加仍得这个数。

5、互为相反数的两个数,可以先相加。

6、符号相同的数可以先相加。

7、分母相同的数可以先相加。

8、几个数相加能得整数的可以先相加。

常用的数集符号:自然数集,正整数集,整数集,有理数集,实数集的表示符号分别为:

1、自然数集即是非负整数集。组成的集合称为自然数集,记作N;

2、全体正整数组成的集合称为正整数集,记作N*,Z+或N+;

3、全体整数组成的集合称为整数集,记作Z;

4、全体有理数组成的集合称为有理数集,记作Q;

5、全体实数组成的集合称为实数集,记作R。

6、全体实数和虚数组成的复数的集合称为复数集,记作C。

集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素,数集就是数的集合。

集合的范围比数集的范围大,数集只是集合中的一种而已,属于数集的一定属于集合,但属于集合的不一定是数集。

扩展资料:

一、自然数简介:

自然数集是全体非负整数组成的集合,常用 N 来表示。自然数有无穷无尽的个数。

二、正整数简介:

和整数一样,正整数也是一个可数的无限集合。在数论中,正整数也可称为自然数,即1、2、3……;

但在集合论和计算机科学中,自然数则通常是指非负整数,即正整数与0的集合,也可以说成是除了0以外的自然数就是正整数。正整数又可分为质数,1和合数。正整数可带正号(+),也可以不带。

三、整数简介:

整数(integer)就是像-3,-2,-1,0,1,2,3,10等这样的数。

整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。

四、有理数简介:

有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。

有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

五、实数简介:

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母?R?表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

参考资料:

百度百科自然数

百度百科正整数

百度百科整数

百度百科有理数

百度百科实数

关于“数学集合的符号有哪些?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[芷秋]投稿,不代表千泰号立场,如若转载,请注明出处:https://m1.hr8848.cn/wiki/202507-7873.html

(47)
芷秋的头像芷秋签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 芷秋的头像
    芷秋 2025年07月25日

    我是千泰号的签约作者“芷秋”

  • 芷秋
    芷秋 2025年07月25日

    本文概览:网上有关“数学集合的符号有哪些?”话题很是火热,小编也是针对数学集合的符号有哪些?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。数学集...

  • 芷秋
    用户072505 2025年07月25日

    文章不错《数学集合的符号有哪些?》内容很有帮助