网上有关“局域网组建时传输媒体一般使用”话题很是火热,小编也是针对局域网组建时传输媒体一般使用寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
组建一个家庭局域网所需要的硬件有网卡和媒体、网络工作站、网络服务器、网络连接器;所需要的软件有:服务器操作系统、网络服务软件、工作站重定向软件、传输协议软件。
局域网由网络硬件 (包括网络服务器、网络工作站、网络打印机、网卡、网络互联设备等)、网络传输媒体以及网络软件组成。
网络通信设备、服务器、客户端可以看作是网络的硬件系统,而网络协议和网络操作系统则构成了网络软件系统。
网络协议是计算机网络的语言,计算机通过网络协议进行交互。协议有多种类型, TCP/IP协议是最常用的协议。
扩展资料:
家庭中使用局域网的优点:
1、安装方便:
在网络建设中,施工周期最长,对周边环境影响最大的是网络布线建设。在施工过程中,往往需要打破墙体开挖、螺纹框架管。
WLAN局域网的最大优点是消除或减少这种复杂的网络布线工作量,通常只要可以建立一个或多个接入点设备来覆盖局域网的整个建筑或区域。
2、灵活使用:
在有线网络中,网络设备的放置受网络信息点位置的限制。一旦局域网完成,它就可以连接到网络,并在无线网络信号覆盖区域内的任何位置进行通信。
3、经济节约:
由于有线网络中缺少灵活性,这就要求网络的规划者尽可能地考虑未来的发展的需要,这就往往导致需要预设大量利用率较低的信息点。而WLAN可以避免或减少以上情况的发生。
百度百科-局域网
计算机网络-数据链路层-局域网
收螺旋扭在一起的两根绝缘导线组成。线对扭在一起可以减少相互间的辐射电磁干扰,双绞线早就用在电话通信中模拟信号的传输,也可用于数据信号的传输,是最常用的传输媒体。
⑴物理特性 双绞线一般是铜质的,提供良好的传导率。
⑵传输特性 双绞线既可以用于传输模拟信号也可以用于传输数字信号。对于模拟信号来说,大约每5~6km需要一个放大器。对于数字信号来说,每2~3km使用一个中继器。双绞线最常用于声音的模拟传输,虽然语音的频谱在20Hz--20MHz之间,但是进行可理解的语音传输所需要的带宽却窄得多,一条全双工音频通道的标准宽是300Hz--4KHz,即只要4KHz的带宽。因而,在双绞线上使用频分多路复用技术可以进行多个音频通道的多路复用。双绞线带宽268Hz, 在通道之间留适当的隔离,那么就可具有24 条间频通道的容量。在使用调制解调器时,双绞线作为模拟间频通道也可传输数字数据。根据上前的调制解调器设计,使用移相键控法PSK,实用的速度达到9600kbps以上。在一条24通道的双绞线上,总的数据传输率是230kbps。双绞线上也可发送数字信号。使用T1线路的总数据传输率可达1.544Mbps。达到较高数据传输率是可能的,但与距离有关,新近制定标准的10BASE-T总线局域网提供了通过无屏蔽双绞线数据传输率为10Mbps,采用特殊技术可达100Mbps。
⑶连通性 双绞线既可以 用于点到点的连接,也可以用于多点的连接,作为一种多点媒体,双绞线比同轴电缆的价格低,但性能差,而且只能把持很少几个站,普遍用于点-点连接。
⑷地理范围 双绞线可以很容易地在15km或更大范围内提供数据传输,例如远距离的中继线。局域网的双绞线主要用于一个建筑物内或几个建筑物内,在100kbps速率下传输距离可达1km。
⑸抗干扰性 在低频传输时,双绞线的抗干扰性相当于或高于同轴电缆,但在超过10~100kHz时,同轴电缆就比双绞线明显优越。
⑹价格 以每米2为计算,双绞线比同轴电缆或光导纤维都要便宜得多。 同轴电缆也象双绞线那样由一对导体组成,但它们的按同轴形式构成线对,最里层是内芯,外包一层绝缘材料,外面再一层屏蔽层,最外面则是起保护作用的塑料外套。内芯和屏蔽层构成一对导体。同轴电缆又分为基带同轴电缆(阻抗50欧姆)和宽带同轴电缆(阻抗75欧姆)。基带同轴电缆用来直接传输数字信号,宽带同轴电缆用于频分多路复用(FDM)的模拟信号发送, 还用于不使用频分多路复用的高速数字信号发送和模拟信号发送。闭路电视所使用的CATV 电缆就是宽带同轴电缆。
⑴物理特性 单根同轴电缆的直径约为1.02--2.54cm,可在较宽的频率范围内工作。
⑵传输特性 50欧姆仅仅用于数字传输,并使用曼彻斯特编码,数据传输率最高可达10Mbps。公用无线电视CATV电缆既可用于模拟信号发送又可用于数字信号发送。对于模似信号频率可达300--400Mbps。在CATV 电缆上用与无线电和电视广播相同的方法自理模拟数据,例如视频和声频。每个电视通道分配6MHz带宽。每个无线电通道需要的带宽要窄得多,因此在同轴电缆上使用频分多路复用FDM技术可以支持大量的通道。
⑶连通性 同轴电缆适用于点到点和多点连接。基带50欧姆电缆可以支持数千台设备,在高数据传输率下(50Mbps)使用欧姆电缆时设备数目限制在20~30台。
⑷地理范围 典型基带电缆的最大距离限制在几公里,宽带电缆可以达到几十公里,取决于界模拟信号还是数字信号.高速的数字传输或模拟传输(50Mbpds)限制在约1km的范围内. 由于有较高的数据传输率,因此总线上信号间的物理距离非常小,这样,只允许有非常小衰减或噪声,否则数据就会出错.
⑸抗干扰性 同轴电缆的抗干扰性能比双绞线强。
⑹价格 安装同轴电缆的费用比双绞线贵,但比光导纤维便宜。 光纤是光导纤维的简称,它由能传导光波的石英下班纤维,外加保护层构成。相对于金属来说重量轻、体积(细)。用光纤来传输电信号时,在发送端先要将其转换成光信号,而在接收端又要由光检波器瞠原成电信号。光源可以采用二种不同类型的发光管:发光二极管LED(Light-Emitting)和注入型激光二极管ILD(Injection Laser Diode)。发光二极管LED是一种固态器件,电流通过时就发光,价格较便宜,它产生的是可见光,定向性较差,是通过在光纤石英玻璃媒体内不断反射面向前传播的。这种光纤称为多模光纤(multimode fiber),注入型激光二极管ILD也是一种固态器件,它根据激光器原理进行工作,即激励量子电子疚来产生一个窄带的超辐射光束,产生的是激光,由于激光的定向性好, 它可沿着光导纤维传播,减少了折射也减少了损耗,效率更高,也能传播更长的距离,而且可以保持很高的数据传输率。但是激光二极管要比LED 价格贵得多,这种光纤称为单模光纤(Single mode fider)。
在接收端用来把光波转换为电能的检波器是一个交电二极管。目前使用两种固态器件:PIN检波器和APD检波器。PIM光电二极管是在二极管的P层和N 层之间增加一小段纯(I)硅,雪崩光电二极管(APD)的外部特性和PIN类似,但是使用了较强电磁场。这两种器件基本上是光电计数器。PIN的价格便宜,但是不如APD灵敏。对光载波的调制属于移幅键控法ASK,也称亮度调制(intensity modulation)。典型的做法是在给定的频率下,以光的出现和消失来表示两个二进制数字。发光二极管LED和注入型激光二极管ILD的信号都可用这种方法调制,PIN和APD 检波直接响应亮度调制。⑴物理特性 光计算机网络中均采用两根光纤(一来一去)组成传输系统。按波长范围(近红外范围内)可分为三种:0.85um波长区(0.8~0.9um),1.3um波长区(1.25~1.35um) 和1.55um波长区(1.53~1.58um)。不同的波长范围光纤损耗特性也不同,其中0.85um工区为多模光纤通信方式,1.55um波长区为单模光纤通信方式工区为多模光纤.3um波长区有多模和单模两种。
⑵传输特性 光纤通过内部的全反射来传输一束经过编码的光信号。内部的全反射可以的任何折射指数高于包层媒体折射指数的透明媒体中进行。实际上光纤作为频率范围从1014~1015Hz的波导管,这一范围覆盖了可见光谱和部分红外光谱。从小角度进入纤维的光沿着纤维反射,其它光线则被吸收,光纤的数据传输率可达几千,传输距离达几十公里。上前一第光纤线路上只能传输一个载波,随着技术进步,会出现实用的频分多路复用或者时分多路复用。
⑶连通性 光纤普遍用于点到点的链路。总线拓扑结构的实验性多点系统建成,但是价格还太贵。原则上讲,由于光纤功率损失小,衰减少的特性以及有较大的带宽潜力,因此一段光纤能够支持的分接头数比双绞线或同轴电缆多得多。
⑷地理范围 从上前的技术来看,可以 在6~8km的距离内不用中继器传输。因此光纤适合于在几个建筑物之间通过点到点的链路连接局域网络。
⑸抗干扰性 光纤具有不受电磁干扰或噪声影响的独有特征,适宜在长距离内保持高数据传输率,而且能够提供很好的安全性。
⑹价格 以每米的价格和所需部件(发送器、接收器、 连接器)比双绞线和同轴电缆要贵 .但是双绞线和同轴电缆的价格不大可能下降,但光纤的价格将随着工程技术的进步会大大下降,使它能与同轴电缆的价格相竞争.由于光纤通信具有损耗低、频带宽、数据传输率高、抗电磁干扰强等特点,对高速率、距离较远的局域网也是很适用的。
低价、可靠的发送器为0.85um波长发光二极管LED,能支持40Mbps速率和1.5~2km范围的局域网.激光二极管的发送器成本较高,且不能满足面万小时寿命的要求。运行在0.85um波长的光二极管检波器PIM也是低价的接收器.雪崩光二极管检波器的信号增益比PIN大,但要用20~50伏的电源,而PIN 检波器只需5伏电源。如果要达到更高速率和与之配套的光纤连接器的性能也是很重要的,要求每个连接器的连接损耗低于25dB,易于安装、价格较低。
局域网(Local Area Network,LAN)为一个单位所拥有,且地理范围和站点数目均有限,使用广播信道通信。局域网有多种传输媒体,由于价格便宜双绞线是局域网的主流传输媒体,当数据率很高时,往往需要使用光纤作为传输媒体。
局域网的主要优点:能进行广播或组播;高传输速率;低误码率;高可靠性和可用性;较低的时延。
(图3-l3(1))是星形网。由于 集线器(hub) 的出现和双绞线大量用于局域网中, 星形以太网以及多级星形结构的以太网获得了非常广泛的应用 。图3-13(2)是环形网,图3-13(3)为总网,各站直接连在总线上。总线两端的 匹配电阻 吸收在总线上传播的电磁波信号的能量, 避免在总线上产生有害的电磁波反射 。总线网以传统 以太网 最为著名。
“局域网工作的层次跨越了数据链路层和物理层。由于局域网技术中有关数据链路层的内容比较丰富,因此我们就把局域网的内容放在数据链路层这一章中讨论。但这并不表示局域网仅仅和数据链路层有关。”
共享信道要着重考虑的一个问题就是如何使众多用户能够合理而方便地共享通信媒体资源。这在技术上有两种方法:
(1)静态划分信道:频分复用、时分复用、波分复用和码分复用等。用户只要分配到了信道就不会和其他用户发生冲突。但这种划分信道的方法代价较高,不适合于局域网使用。
(2)动态媒体接入控制:又称为多点接入(multiple access),其特点是信道并非在用户通信时固定分配给用户。这里又分为以下两类:
随机接入:随机接入的特点是所有的用户可随机地发送信息。但如果恰巧有两个或更多的用户在同一时刻发送信息,那么在共享媒体上就要产生碰撞(即发生了冲突),使得这些用户的发送都失败。因此,必须有解决碰撞的网络协议。
受控接入:受控接入的特点是用户不能随机地发送信息而必须服从一定的控制。这类的典型代表有分散控制的令牌环局域网和集中控制的多点线路探询(polling),或称为轮询。
受控接入则由于目前在局域网中使用得较少,大多使用随机接入以太网。
计算机与外界局域网的连接是通过通信适配器(adapter)进行的。适配器本来是在主机箱内插入的一块网络接口板(或者是在笔记本电脑中插入一块PCMCIA卡一个人计算机存储器卡接口适配器)。这种接口板又称为网络接口卡NIC (Network Interface Card)或简称为“ 网卡 ”。由于现在计算机主板上都己经嵌入了这种适配器,不再使用单独的网卡了。在这种通信适配器上面装有 处理器和存储器(包括RAM和ROM) 。 适配器和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的,而适配器和计算机之间的通信则是通过计算机主板上的 I/O 总线以并行传输方式进行的。 因此, 适配器 的一个重要功能就是 要进行数据串行传输和并行传输的转换 。由于网络上的数据率和计算机总线上的数据率并不相同,因此在适配器中必须装有 对数据进行缓存 的存储芯片。在主板上插入适配器时,还必须把管理该适配器的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉适配器,应当从存储器的什么位置上把多长的数据块发送到局域网,或者应当在存储器的什么位置上把局域网传送过来的数据块存储下来。适配器还要能够 实现以太网协议 。
适配器在 接收和发送各种帧 时,不使用计算机的CPU。这时计算机中的CPU可以处理其他任务。当适配器收到有差错的帧时,就把这个帧直接丢弃而不必通知计算机。当适配器收到正确的帧时,它就使用中断来通知该计算机,并交付协议栈中的网络层。当计算机要发送IP数据报时,就由协议栈把IP数据报向下交给适配器,组装成帧后发送到局域网。图3-15表示适配器的作用。我们特别要注意,计算机的 硬件地址就在适配器的ROM中 ,而计算机的 软件地址一IP地址 , 则在 计算机的 存储器中 。
关于“局域网组建时传输媒体一般使用”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[墨染流云]投稿,不代表千泰号立场,如若转载,请注明出处:https://m1.hr8848.cn/cshi/202507-11260.html
评论列表(3条)
我是千泰号的签约作者“墨染流云”
本文概览:网上有关“局域网组建时传输媒体一般使用”话题很是火热,小编也是针对局域网组建时传输媒体一般使用寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助...
文章不错《局域网组建时传输媒体一般使用》内容很有帮助